Av-gr.ru

Двери декор
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Высота ширина глубина порядок

Технологии измерения жд шаблонами

Обмер колесных пар производят при их осмотре под вагонами, обыкновенном и полном освидетельствовании, а также при ремонте.

Прокат измеряют абсолютным шаблоном на расстоянии 70 мм от внутренней грани колеса, т.е. в наиболее изнашиваемой части. Для определения размера проката шаблон накладывают на профиль поверхности катания колеса до совмещения вертикальной грани шаблона с внутренней гранью колеса, опорная скоба при этом опирается на вершину гребня. Опустив измерительную ножку 2 до соприкосновения с поверхностью катания 1 размер проката прочитывают на вертикальной шкале и шкале нониуса шаблона.

Определение величины проката производят в соответствии с рисунком путем подсчета количества целых делений по шкале движка до первой риски на правой шкале нониуса, затем определяют, какие риски на обеих шкалах совпадают, и подсчитывают окончательную величину дефекта. Цена деления шкалы нониуса — 0,1 мм.
При наличии неравномерного проката на поверхности катания колеса его измеряют в нескольких местах по диаметру колеса и учитывают максимальное значение, а также разницу между максимальным и минимальным значениями.

Этим же шаблоном измеряют ползун на поверхности катания. Для этого шаблон устанавливают так же, как и при измерении проката. Измерительную ножку шаблона опускают по вертикали над самым глубоким местом ползуна. Глубину ползуна определяют как разницу между углублением и прокатом. При этом измерительная ножка должна оставаться на неизменном расстоянии от внутренней грани обода колеса.

Толщину гребня измеряют абсолютным шаблоном на расстоянии 18 мм от его вершины с помощью горизонтального движка 1 шаблона, перемещая его до соприкосновения с гребнем или наложением браковочного выреза шаблона шириной 25 мм.

Гребень может иметь большой вертикальный износ (подрез), который определяют по отсутствию зазора между вертикальной гранью движка специального шаблона ВПГ и гребнем колеса на высоте 18 мм.

Для контроля вертикального подреза шаблон опорными ножками угольника 1 прижимают плотно к внутренней грани колеса. Движок 2 вплотную подводится к гребню колеса и закрепляется стопорным винтом. Подрез считается недопустимым, если рабочая поверхность основания движка соприкасается в верхней части на высоте 18 мм с поверхностью гребня.

Толщину обода колеса измеряют толщиномером в наиболее изнашиваемом месте по кругу катания. Поэтому измерительную ножку 3 шаблона также устанавливают на расстоянии 70 мм от линейки 1соприкосновения с поверхностью катания колеса при помощи движка 2.
Размер толщины обода колеса определяют по шкале линейки 1. Шаблон линейки плотно прижимают к внутренней грани обода колеса, а выступ в нижней части линейки при этом заводят под внутреннюю поверхность обода и затем измерительную ножку подводят до соприкосновения с поверхностью катания колеса при помощи движка 2.
Толщиномером можно измерить также глубину ползунов, выщербин, высоту наваров. Размеры этих дефектов определяют как разницу между толщиной обода в местах расположения этих дефектов и толщиной обода на таком же расстоянии от внутренней грани обода колеса, но в том месте, где их нет.

Измерение расстояния между внутренними гранями колес выполняют штангеном РВП, на штанге 3которого одна ножка 4 закреплена неподвижно, а другая1 может перемешаться и стопориться винтом 2.

При измерении расстояния между внутренними гранями колес обе ножки подводят к внутренним граням и по шкале на штанге 4 определяют контролируемый размер.

Измерение диаметров по кругу катания и определение разности диаметров колес на одной оси выполняют скобой ДК. Для выполнения измерений необходимо ослабить стопорный винт 1 подвижной бабки 2 и прижать скобу опорными поверхностями 3 к внутренней грани обола колеса, подвижную бабку 5 фиксируют стопорным винтом 1. Считывание показаний проводится по основной шкале и нониусу.

Наконечники бабок 4 и 5 следует подвести до соприкосновения с поверхностью колеса и в положении максимального диаметра. Измерение диаметров колес производится не менее трех раз для каждого колеса в разных диаметральных сечениях. За действительное значение диаметра колеса принимают среднее арифметическое значение трех измерений.
При ТО и TP вагонов удобно использовать малогабаритный автоматизированный прибор для измерения колес МАИК. МАИК предназначен для измерения диаметра и толщины гребня колес.

В устройство прибора МАИК входит: 1 — скоба измерителя; 2— шток измерителя диаметра; 3— измеритель толщины гребня; 4 — крышка батарейного отсека; 5 — кронштейны с роликами;6 — тумблер включения питания; 7— разъем кабеля блока сопряжения; 8— электронный блок.

Он позволяет проводить измерения без выкатки колесных пар из под вагона, автоматически вычисляет разность диаметров колес на колесной паре.
Применение МАИК позволяет повысить точность измерений благодаря конструкции, обеспечивающей правильное позиционирование измерителя на колесе, и автоматическому усреднению результатов измерений в нескольких точках колеса. Масса прибора 2,8 кг. Точность измерения +0,5 мм.

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси.

Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания, который устанавливается на расстоянии 70 мм от внутренней грани колеса, для чего риска на сухаре 3 движка 2 должна совпасть с контрольной риской 4 основания шаблона 1. Шаблон опорной ножкой 5 установить на вершину гребня, прижать вертикальную грань шаблона и лапку 6 шаблона 1 к внутренней грани обода колеса, опустить вертикальный движок сухаря 2 до соприкосновения с поверхностью катания колеса и произвести считывание показаний по шкале движка и нониусу.

Читайте так же:
Как записывать габариты правильно

Внимание! Шаблон нужно прикладывать в нескольких местах по окружности колеса. При разных показаниях за величину проката следует принимать большее значение.

Измерение неравномерного проката производится в местах повышенного видимого износа колеса, т.е. в сечении с видимым максимальным износом. Для определения его величины дополнительно производят измерения рядом с этим сечением с каждой стороны на расстоянии до 500 мм .

Внимание!Величина дефекта определяется, как разность результатов этих измерений (от большего значения числа вычитается меньшее). Максимальное значение разности результатов измерений принимается за действительную величину неравномерного проката.

· 1-я точка 9мм, 2-я точка 6мм, 3-я точка 7мм.

· 9мм — 6мм = 3 мм неравномерный прокат

Для измерения вертикального подреза ножку 1 шаблона прижимают к внутренней грани обода колеса. Движок 2 подводят к гребню так, чтобы браковочная грань 3 касалась рабочей поверхности гребня, а нижняя поверхность ножки движка — рабочей поверхности катания колеса. Если браковочная грань 3 движка 2 соприкасается с поверхностью гребня полностью или хотя бы кромкой с отметкой 18, такую колесную пару бракуют. Если между гребнем и браковочной гранью движка шаблона у отметки 18 имеется зазор, колесную пару не бракуют.

Визуальный контроль и замеры.
Измерение глубины («h1» или «h2») и ширины («b») производят с помощью толщиномера и линейки.

Измерение высоты навара производят абсо-лютным шаблоном. Высота навара определя-ется как разность измерений проката в двух плоскостях – радом с наваром и на наваре.

В случае, когда навар смещен от круга катания, движок абсолютного шаблона смещается по специальной прорези до совпадения его с наваром.

Местное уширение обода количественно определяется разностью измерений ширины обода колеса с помощью кронциркуля в месте наибольшего уширения и в месте, не имеющем его.
Внимание! Местное уширение (раздавливание) обода более5 мм не допускается.

Линейку 2 надо плотно прижать к внутренней грани колеса. При этом выступ 1 должен упираться в обод или бандаж. Риску 8 движка 9 толщиномера установить на расстоянии 70 мм от внутренней грани обода или бандажа (против деления 70 на линейке 7) и закрепить движок в этом положении винтом 6. Линейку с движком 4 опустить до соприкосновения ножки движка 9 с поверхностью катания колеса и закрепить винтом 3. Снять толщиномер с колеса и против риски 5 на движке 4 прочитать на шкале линейки 2 цифру, указывающую толщину обода.

Измерение производится с помощью вертикального движка абсолютного шаблона. Отсчет по нониусу шаблона — 0,1 мм, цена деления шкалы вертикального движка — 1,0 мм. Установка шаблона производится в месте расположения дефекта. Вертикальный движок 2 опускают на поверхность катания колеса в месте дефекта над самым глубоким местом и производят измерения по шкале движка и нониусу. Затем производят измерения рядом с этим местом (при этом движок должен оставаться после замера дефекта на том же расстоянии от внутренней грани обода колеса) и определяют разность между величиной углубления и проката. В случае, когда ползун или выработка смещены от круга катания, в основании шаблона 1 имеется прорезь, по которой вертикальный движок 2 можно перемещать до совпадения с местом шкале вертикального движка и нониусу абсолютного шаблона.

При несовпадении вышеуказанных штриха нониуса и отметок движка результат измерений определяется как сумма целого числа, считываемого по основной шкале вертикального движка и десятичного значения, определяемого по шкале нониуса.

Целое число определяется по количеству полных делений на шкале вертикального движка до крайнего нижнего штриха нониуса и будет равно 2.

Отсчет по нониусу сводится к определению совпадения одного из штрихов нониуса с любым штрихом шкалы движка. Десятичное значение определяется как произведение величины отсчета по нониусу (0,1 мм) на количество делений нониуса до совпадающего штриха. Десятичное значение определится по количеству делений нониуса до совпадающего штриха — 6 делений.

0,1 мм х 6 делений = 0,6 м Измеряемая величина будет равна 2,6 мм.

ИЗМЕРЕНИЕ толщины гребня выполняется с помощью горизонтального движка 2, установленного на расстоянии 18 мм от вершины гребня, абсолютного шаблона 1.

При измерении толщины гребня шаблон устанавливают на поверхность катания обода колеса, при этом опорная поверхность 3 шаблона должна плотно прилегать к внутренней грани колеса, а опорная ножка 4 должна опираться на вершину гребня. Затем горизонтальный движок 2 шаблона перемещается до соприкосновения с поверхностью гребня. По делениям шкалы на направляющей планке 5, установившейся против риски 6 определяется толщина гребня.

Глубина отколов измеряется по радиусу колеса с помощью линейки.
Расстояние оставшейся части обода колеса замеряется с помощью линейки в месте откола в наиболее узкой части обода.

Читайте так же:
Вешалка для шарфов и платков своими руками

Измерение производится с помощью линейки 2 и ровного бруска 1.

Брусок располагается над протертостью вдоль поверхности оси и является точкой отсчета. С помощью линейки измеряется расстояние от поверхности оси, обозначенной бруском до нижней точки протертости. Данное расстояние является глубиной протертости.

Каталог

  • ИЗМЕРИТЕЛЬНЫЙ ИНСТРУМЕНТ

Все цены на сайте носят информационный характер и не являются публичной офертой. Внешний вид продукции может отличаться, точную информацию уточняйте у менеджера.

Обход дерева

Обход дерева (известный также как поиск по дереву) — вид обхода графа [en] , обусловливающий процесс посещения (проверки и/или обновления) каждого узла структуры дерева данных ровно один раз. Такие обходы классифицируются по порядку, в котором узлы посещаются. Алгоритмы в статье относятся к двоичным деревьям, но могут быть обобщены и для других деревьев.

Содержание

Типы [ править | править код ]

В отличие от связных списков, одномерных массивов и других линейных структур данных, которые канонически обходятся в линейном порядке, деревья можно обходить различными путями. Деревья можно обходить «в глубину» или «в ширину». Существует три основных способа обхода «в глубину»

  • прямой (pre-order)
  • центрированный (in-order)
  • обратный (post-order) [1] . Кроме этих трёх основных схем, возможны более сложные гибридные схемы, такие как алгоритмы поиска с ограниченной глубиной[en] , подобные поиску в глубину с итеративным углублением[en] .

Структуры данных для обхода дерева [ править | править код ]

Обход дерева итеративно проходит по всем узлам согласно некоторому алгоритму. Поскольку из данного узла имеется более одного следующего узла (это не линейная структура данных), то, в предположении последовательных вычислений (а не параллельных), некоторые узлы должны быть отложены, то есть запомнены некоторым способом для дальнейшего посещения. Часто это делается с помощью стека (LIFO = последний вошёл — первый вышел) или очереди (FIFO = первый вошёл — первым вышел). Так как дерево самореферентная (ссылающаяся на себя, определённая рекурсивно) структура данных, обход может быть определён рекурсией или, более тонко, корекурсией естественным и ясным образом. В этих случаях отложенные узлы запоминаются либо явно в обычном стеке, либо неявно в стеке вызовов, либо явно в очереди.

Поиск в глубину легко имплементируется через стек, включая имплементацию через рекурсию (стек вызовов), в то время как поиск в ширину легко имплементируется через очередь, включая имплементацию через корекурсию.

Поиск в глубину [ править | править код ]

Эти поиски называются поиском в глубину ввиду того, что дерево поиска проходится вниз насколько это можно на каждом потомке прежде чем переходить к следующей родственной ветке. Для двоичного дерева они определяются как операции обработки вершины рекурсивно в каждом узле, начиная с корня. Алгоритм обхода следующий [2] [3]

Основной рекурсивный подход для обхода (непустого) бинарного дерева: Начиная с узла N делаем следующее:

(L) Рекурсивно обходим левое поддерево. Этот шаг завершается при попадании опять в узел N.

(R) Рекурсивно обходим правое поддерево. Этот шаг завершается при попадании опять в узел N.

(N) Обрабатываем сам узел N.

Эти шаги могут быть проделаны в любом порядке. Если (L) осуществляется перед (R), процесс называется обходом слева направо, в противном случае — обходом справа налево. Следующие методы показывают обходы слева направо:

Прямой обход (NLR) [ править | править код ]
  1. Проверяем, не является ли текущий узел пустым или null.
  2. Показываем поле данных корня (или текущего узла).
  3. Обходим левое поддерево рекурсивно, вызвав функцию прямого обхода.
  4. Обходим правое поддерево рекурсивно, вызвав функцию прямого обхода.
Центрированный обход (LNR) [ править | править код ]
  1. Проверяем, не является ли текущий узел пустым или null.
  2. Обходим левое поддерево рекурсивно, вызвав функцию центрированного обхода.
  3. Показываем поле данных корня (или текущего узла).
  4. Обходим правое поддерево рекурсивно, вызвав функцию центрированного обхода.

В двоичном дереве поиска центрированный обход извлекает данные в отсортированном порядке. [4] .

Обратный обход (LRN) [ править | править код ]
  1. Проверяем, не является ли текущий узел пустым или null.
  2. Обходим левое поддерево рекурсивно, вызвав функцию обратного обхода.
  3. Обходим правое поддерево рекурсивно, вызвав функцию обратного обхода.
  4. Показываем поле данных корня (или текущего узла).

Последовательность обхода называется секвенциализацией дерева. Последовательность обхода — это список всех посещённых узлов. Ни одна из секвенциализаций согласно прямому, обратному или центрированному порядку не описывает дерево однозначно. Если задано дерево с различными элементами, прямой или обратный обход вместе с центрированным обходом достаточны для описания дерева однозначно. Однако прямой обход вместе с обратным оставляет некоторую неоднозначность в структуре дерева [5] .

Дерево общего вида [ править | править код ]

Чтобы обойти любое дерево поиском в глубину, осуществляются рекурсивно следующие операции для каждого узла:

  1. Выполняется операция прямого обхода.
  2. Для каждого i от 1 до числа детей выполняем:
    1. Посещаем i-ого потомка, если он есть.
    2. Выполняем центрированную операцию.

    В зависимости от текущей задачи операции прямого, обратного или центрированного обхода могут быть пустыми, или вы можете хотеть лишь посетить конкретного потомка, так что эти операции опциональны. На практике может потребоваться более чем одна операция прямого, обратного или центрированного обхода. Например, когда осуществляется вставка в троичное дерево, операция прямого обхода выполняется путём сравнения элементов. Операция обратного обхода может потребоваться после этого для балансировки дерева.

    Поиск в ширину [ править | править код ]

    Деревья можно обходить также в порядке уровней, где мы посещаем каждый узел на уровне прежде чем перейти на следующий уровень. Такой поиск называется поиском в ширину (breadth-first search, BFS).

    Другие виды [ править | править код ]

    Существуют также три алгоритма обхода, которые не классифицируются ни как поиск в глубину, ни как поиск в ширину. Один из таких алгоритмов — метод Монте-Карло [en] , который сосредотачивается на анализе наиболее обещающих ходов, основываясь на расширении дерева поиска при случайном выборе пространства поиска.

    Приложения [ править | править код ]

    Прямой обход при дублировании узлов и рёбер может сделать полный дубликат двоичного дерева. Это можно использовать для создания префиксного выражения (польской нотации) из деревья выражений [en] , для чего обходим выражение в прямом порядке.

    Центрированный обход наиболее часто используется в двоичных деревьев поиска, поскольку он возвращает значения из низлежащего множества в порядке, определяемом функцией сравнения, которая определяет двоичное дерево поиска.

    Обратный обход при удалении или освобождении узлов может удалить или освободить всё бинарное дерево. Обход также образует постфиксное представление бинарного дерева.

    Реализация [ править | править код ]

    Поиск в глубину [ править | править код ]

    Прямой обход [ править | править код ]
    Центрированный обход [ править | править код ]
    Обратный обход [ править | править код ]

    Все приведённые имплементации требуют стек, пропорциональный высоте дерева, который является стеком вызовов для рекурсивной имплементации и стеком родителей для итеративной. В плохо сбалансированном дереве этот стек может быть значительным. В итеративной имплементации мы можем избавиться от стека путём сохранения для каждого узла его родителя или с помощью прошивки дерева (следующий раздел).

    Центрированный обход Морриса с помощью прошивки [ править | править код ]

    Двоичное дерево прошивается путём присвоения каждому левому указателю потомка (который в противном случае всегда пуст = null) указателя на предшественника узла в центрированном порядке (если таковой существует), а каждому правому указателю потомка (который в противном случае всегда пуст) указателя на следующий узел в центрированном порядке (если таковой существует).

    1. Избегаем рекурсии, которая использует стек вызовов и расходует память и время.
    2. Узел хранит запись своего родителя.
    1. Дерево более сложно.
    2. Мы можем сделать только один шаг обхода в один момент времени.
    3. Больше возможность ошибок, когда оба потомка отсутствуют и оба указателя узла указывают на предков.

    Обход Морриса является имплементацией центрированного обхода, использующей прошивку [6] :

    1. Создаются ссылки на потомков в центрированном порядке.
    2. Печатаются данные согласно этим ссылкам.
    3. Отменяются изменения для возвращения к исходному дереву.

    Поиск в ширину [ править | править код ]

    Ниже приведён псевдокод для простого, основывающегося на очереди, поуровневого обхода. Алгоритм требует пространство, пропорциональное максимальному числу узлов на уровнях. Эта величина может достигать половины всех узлов. Более эффективный по памяти подход для этого типа обхода может быть имплементирован с помощью поиска в глубину с итеративным углублением [en] .

    Бесконечные деревья [ править | править код ]

    Обход обычно осуществляется для деревьев с конечным числом узлов (а следовательно, с конечной глубиной и конечным коэффициентом ветвления), но также он может быть осуществлён для бесконечных деревьев. Такой обход представляет интерес, в частности, в функциональном программировании (для отложенных вычислений), так как бесконечные структуры данных можно часто легко определить и работать с ними, хотя они не могут быть (строго) вычислены, так как потребовалось бы бесконечное время. Некоторые конечные деревья слишком велики, чтобы представить их явно, такие как дерево игры [en] шахмат или го, так что имеет смысл работать с ними как с бесконечными.

    Главное требование обхода — посетить все узлы. Для бесконечных деревьев простые алгоритмы это осуществить не могут. Например, если имеется двоичное дерево бесконечной глубины, поиск в глубину будет двигаться вдоль одной стороны (обычно — по левой стороне) дерева, никогда не посетив остальные вершины, и более того, центрированный или обратный обход никогда не посетит никакой узел, так как никогда не достигнет листа. Для контраста, обход в ширину (поуровневый) обходит двоичное дерево бесконечной глубины без проблем и более того, обходит любое дерево с ограниченным коэффициентом ветвления.

    С другой стороны, если дано дерево глубины 2, в котором корень имеет бесконечное число детей, а каждый узел-ребёнок имеет двух детей, поиск в глубину посетит все узлы, так как он, обойдя внуков (детей второго уровня), передвигается к следующему узлу (в предположении, что это не обратный обход, при котором никогда не достигается корень). Для контраста, поиск в ширину никогда не доберётся до внуков, поскольку он должен перебрать сначала всех детей (1-го уровня).

    Более сложный анализ времени работы может быть дан с помощью бесконечных порядковых чисел. Например, поиск в ширину в дереве глубины 2 (как выше) будет занимать ω·2 шагов — ω для первого уровня и другие ω для второго уровня.

    Таким образом, простые поиски в глубину и в ширину не обходят любое бесконечное дерево и неэффективны на очень больших деревьях. Однако гибридные методы могут обходить любое (счётное) бесконечное дерево, главным образом через диагональный аргумент [en] («диагональ», комбинация вертикали и горизонтали, соответствует комбинации поиска в глубину и в ширину).

    Конкретно, если дано бесконечно ветвящееся дерево бесконечной глубины, помечаем корень (), детей корня (1), (2), …, внуков (1, 1), (1, 2), …, (2, 1), (2, 2), …, и так далее. Узлы тогда находятся в один-к-одному соответствии с конечными (возможно пустыми) последовательностями положительных чисел, множество которых счётно и может быть упорядочено сначала по сумме элементов, а затем по лексикографическому порядку внутри последовательностей с данной суммой (только конечное число последовательностей даёт заданную сумму, так что все узлы достигаются; формально говоря, существует конечное число композиций заданного натурального числа, а именно 2 n−1 композиций). Этот порядок задаёт обход дерева. Конкретно:

    Это может быть проинтерпретировано как отображение бесконечно глубокого двоичного дерева в такого вида дерево и применение поиска в ширину — заменяем рёбра «вниз», соединяющие родительский узел со вторым и далее потомками, с «правыми» рёбрами от первого потомка ко второму, от второго к третьему и т. д.. Тогда на каждом шаге мы двигаемся либо вниз (добавляется (, 1) в конец) или идём вправо (добавляем единицу к последнему числу) (за исключением корня, от которого можно идти только вниз), что показывает связь между бесконечным бинарным деревом и приведённой выше нумерацией. Сумма входов (без единицы) соответствует расстоянию от корня, что согласуется с 2 n−1 узлов и глубиной n − 1 в бесконечном двоичном дереве (2 соответствует бинарности дерева).

    Организация и порядок производства земляных работ

    определение мест установки и типов ограждений котлованов и траншей, а также лестниц для спуска работников к месту работ.

    При производстве земляных работ возможно воздействие на работника следующих опасных и вредных производственных факторов:

    обрушающиеся горные породы (грунты);

    падающие предметы (куски породы);

    движущиеся машины и их рабочие органы, а также передвигаемые ими предметы;

    расположение рабочих мест вблизи перепада по высоте 1,3 м и более;

    повышенное напряжение в электрической цепи, замыкание которой может произойти через тело человека;

    химические опасные и вредные производственные факторы.

    Производство земляных работ осуществляется по наряду — допуску и под непосредственным наблюдением руководителя работ:

    — В охранной зоне кабелей высокого напряжения, действующего газопровода, других коммуникаций работы производятся под наблюдением работников организации, эксплуатирующих эти коммуникации, после получения письменного разрешения от организации, эксплуатирующей эти коммуникации

    — На участках с возможным патогенным заражением почвы (свалки, кладбище, скотомогильники и т.п.) — после получения письменного разрешения от органа санитарного надзора.

    При размещении рабочих мест в выемках их размеры должны обеспечивать размещение оборудования, а также проходы на рабочих местах и к рабочим местам ширину в свете не менее 0,6 м. Выемки, разрабатываемые в местах возможного нахождения людей (на улицах, проездах, во дворах населенных пунктов), ограждаются защитными ограждениями. На ограждении устанавливаются предупредительные надписи, а в ночное время — сигнальное освещение. Для прохода людей через выемки устанавливаются переходные мостики. Для прохода на рабочие места в выемки устанавливаются трапы или маршевые лестницы шириной не менее 0,6 м с ограждениями или приставные лестницы (деревянные — длиной не более 5 м).

    Производство работ, связанных с нахождением работников в выемках с вертикальными стенками без крепления в песчаных, пылевато-глинистых и талых грунтах выше уровня грунтовых вод и при отсутствии вблизи подземных сооружений, допускается при их глубине не более:

    1,0 м — в не слежавшихся насыпных и природного сложения песчаных грунтах;

    1,25 м — в супесях;

    1,5 м — в суглинках и глинах.

    Перед допуском работников в выемки глубиной более 1,3 м, ответственное лицо проверяет состояние откосов, надежность крепления стенок выемки. Допуск работников в выемки с откосами, подвергшимися увлажнению, разрешается только после тщательного осмотра лицом, ответственным за обеспечение безопасности производства работ.

    Разработка роторными и траншейными экскаваторами в связных грунтах (суглинках и глинах) выемок с вертикальными стенками без крепления допускается на глубину не более 3 м. В этих случаях спуск работников в траншеи не допускается.

    В местах, где требуется пребывание работников, устраиваются крепления или разрабатываются откосы. Устанавливать крепления необходимо в направлении сверху вниз по мере разработки выемки на глубину не более 0,5 м. Верхняя часть креплений должна выступать над бровкой выемки не менее чем на 15 см. Разборку креплений в выемках следует вести снизу вверх по мере обратной засыпки выемки, если иное не предусмотрено ППР.

    Разработка грунта в непосредственной близости от действующих подземных коммуникаций допускается только при помощи лопат, без помощи ударных инструментов.

    Применение землеройных машин в местах пересечения выемок с действующими коммуникациями, не защищенными от механических повреждений, разрешается по согласованию с организациями-владельцами коммуникаций.

    Разрабатывать грунт в выемках «подкопом» не допускается. Извлеченный из выемки грунт необходимо размещать на расстоянии не менее 0.5 м от бровки этой выемки.

    Автомобили-самосвалы при разгрузке на насыпях, а также при засыпке выемок следует устанавливать не ближе 1м от бровки естественного откоса.

    При работе экскаватора не разрешается производить другие работы со стороны забоя и находиться работникам в радиусе действия экскаватора плюс 5 м.

    При механическом ударном рыхлении грунта не допускается нахождение работников на расстояние ближе 5 м от мест рыхления.

    Запрещается разработка грунта бульдозером и скреперами при движении на подъем или под уклон, с углом наклона более указанного в паспорте машины.

    Работники, допускаемые к земляным работам, должны быть обучены по охране труда в установленном порядке, обеспеченными необходимыми средствами индивидуальной защиты.

    Прогнозирование и оценка обстановки при химических авариях

    В результате возникновения аварий на различных производственных объектах с жидкими (газообразными) АХОВ или пожаров с твердыми химическими веществами с образованием аэрозолей АХОВ в районах, прилегающих к очагу поражения, может создаться сложная химическая обстановка на значительных площадях с образованием обширных зон химического заражения.

    Очаг поражения

    Под зоной химического заражения понимается территория или акватория, в пределах которой распространены или привнесены опасные химические вещества в концентрациях или количествах, создающих опасность для жизни и здоровья людей, для сельскохозяйственных животных и растений в течение определенного времени. Она включает территорию непосредственного разлива АХОВ (горения веществ, образующих АХОВ) и территорию, над которой распространилось облако зараженного воздуха с поражающими концентрациями.

    Величина зоны химического заражения зависит от физико-химических свойств, токсичности, количества разлившегося (выброшенного в атмосферу) АХОВ, метеорологических условий и характера местности.

    Размеры зоны химического заражения характеризуются глубиной и шириной распространения облака зараженного воздуха с поражающими концентрациями и площадью разлива (горения) АХОВ. Внутри зоны могут быть районы со смертельными концентрациями.

    Основной характеристикой зоны химического заражения является глубина распространения облака зараженного воздуха. Она может колебаться от нескольких десятков метров до десятков километров.

    Глубина зоны химического заражения для АХОВ определяется глубиной распространения первичного и вторичного облаков зараженного воздуха и в значительной степени зависит от метеорологических условий, рельефа местности и плотности застройки объектов.

    Существенное влияние на глубину зоны химического заражения оказывает степень вертикальной устойчивости приземного слоя воздуха.

    Обычно рассматриваются для таких задач прогнозирования три основных типа устойчивости атмосферы:

    • неустойчивая (конвекция), когда нижний слой воздуха нагрет сильнее верхнего. Характерна для солнечной летней погоды;
    • безразличная (изотермия), когда температура воздуха на высотах до 30 м от поверхности земли почти одинакова. Характерная для переменной облачности в течение дня, облачного дня и облачной ночи, а также дождливой погоды;
    • устойчивая (инверсия), когда нижние слои воздуха холоднее верхних. Характерна для ясной ночи, морозного зимнего дня, а также для утренних и вечерних часов.

    В большинстве случаев при расчетах можно принимать, что степень вертикальной устойчивости атмосферы сохраняется неизменной:

    • утром и вечером – не более 3 часов;
    • днем и ночью, весной и осенью, днем зимой и ночью летом – не более 6 часов;
    • днем летом и ночью зимой – не более 9 часов.

    Инверсия способствует распространению облака зараженного воздуха на более значительные расстояния от места разлива (горения) АХОВ, чем изотермия и конвекция. Наименьшая глубина распространения АХОВ наблюдается при конвекции.

    Существенное влияние на глубину зоны химического заражения оказывает площадь разлива АХОВ. Она может колебаться в широких пределах – от нескольких сотен до нескольких тысяч квадратных метров. Наличие земляной обваловки, поддона, железобетонной ограждающей стенки ограничивает площадь разлива АХОВ и способствует сокращению глубины распространения зараженной атмосферы.

    В зависимости от глубины распространения облака АХОВ в зоне заражения может быть один или несколько очагов химического поражения. Очагом химического поражения принято называть территорию с находящимися на ней объектами, в пределах которой в результате воздействия АХОВ произошли массовые поражения людей, сельскохозяйственных животных и растений. Такими объектами могут быть административные, промышленные, сельскохозяйственные предприятия и учреждения, жилые кварталы населенных пунктов, городов и другие объекты.

    Потери рабочих, служащих и населения в очагах химического поражения зависят от токсичности, величины концентрации АХОВ и времени пребывания людей в очаге поражения, степени их защищенности и своевременности использования индивидуальных средств защиты (противогазов). Характер поражения людей, находящихся в зоне химического поражения, может быть различным. Он определяется главным образом токсичностью АХОВ и полученной токсодозой.

    При заблаговременном прогнозировании обстановки при химических авариях с целью определения размеров зоны защитных мероприятий применяются следующие допущения:

    голоса
    Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector